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ON THE ISOLATED CHARACTER OF SOLUTIONS WITH A STRONG ATTACHED SHOCK WAVE AT 
THE EDGES OF A v-SHAPED WING AND WEDGE* 

A.V. GRISHIN 

The transonic approximation is used to study the conical problems of 
supersonic flow past an infinite wedge and a V-shaped wing, the flow 
behind the attached shock wave is subsonic. The possibility of the 
existence of a flow with a strong shock in a plane perpendicular to the 
edge of the wing or wedge is clarified. For this reason the linear theory 
is used to study the boundary value problems for the perturbations in 
exact solutions with a plane shock. It is shown that the boundary value 
problems have a solution, provided that the plane shock wave corresponding 
to the exact solution is weak (in a plane perpendicular to the edge!, and 
have no solution when the shock is strong. 

Earlier /l/, the problem of flow past a V-shaped wing was studied, where the flow was 
supersonic behind the attached shock wave. Experimental investigations /2-4iof the flow past 
a V-shaped wing resembling flows with a strong plane shock, made it possible to establish /4/ 
the isolated nature of the flow with a strong shock. Numerical methods /5/ and experimental 
methods /2-4/were used to show that when the angle of attach of the V-shaped wing with a 
strong plane shock is reduced, a flow results with Mach interaction between the shock waves 
and the weak discontinuity at the edge. It was established /4/ that increasing the angle of 
attack causes detachment of the shock wave. A non-steady model of supersonic flow past an 
infinite wedge is proposed in /6/** (**see also Rusanov V.V. and Sharakshane A.A. Non-steady 
models of flow past conical bodies. Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 
No.27, 1978, and Rusanov V.V. and Sharakshane A.A., Study of a linearized non-stationary 
model of flow past an infinite wedge. Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 
No.103, 1980) and it is shown that a flow with a strong shock wave is unstable in this model. 
The non-existence of a flow with a strong shock represents a basically different case of a 
finite wedge and was proved using the hodograph method /7/ without taking into account the 
vorticity (in the transonic approximation). The result is generalized in /8/ to the case of 
vertical flows. 

1. Assuming that the velocities are normalized with respect to the speed of sound, we 
shall consider the problems in the transonic approximation. We take, as the unperturbed flow, 
the uniform flow past a wedge with a strong or weak shock wave attached to the edge of the 
wedge, in the case when the flow behind the shock is subsonic. We choose a coordinate system 
attached to the edge of the wedge, in which the z axis is directed along the edge and the I 
axis along the velocity vector behind the shock wave (Fig.1). The transonic velocity components 
Y = (1 -!- U, ", I) can then be represented in the form u = uO,.v= vrn,m= 0 in front of the wave, 
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and U= I+, V= 0, ID= 0 behind the wave. 

The flow with a plane attached shock wave at the wedge 
of V-shaped wings with a plane attached shock. Indeed, let 
shock wave from the origin of coordinate. The stream lines 

yields exact solutions for a family 
us draw straight lines along the 
emerging from the points lying 

on these straight lines form a V-shaped surface whose edge lies on the wedge and coincides 
with the I axis. The surface can be regarded as a V-shaped wing with a plane shock at the 
edges. 

Let us assume that a perturbation has been introduced into the concoming flow by slightly 
varying the velocity component u, and that the surfaceofthe attached shock wave has become 
slightly curved. Then the velocity components in front of the wave will be II = (I i e) Uo*, v = 
v.,,,u,= 0 where E is a small parameter, and behind the wave they will be u = U,,? i III, U = l!, U' = 
w'. We shall also assume that this flow, as well as the unperturbed flow, will have conical 
symmetry and all flow parameters will depend on the variables E= r/t,?= y/r. We shall write 
the equation of the shock wave in the form n= no+n' where 11,) corresponds to the initial 
position of the shock wave. We shall choose n,, and uU1 as the independent parameters, and 
confine ourselves to considering wings symmetrical with respect to the xy-plane. The 
geometry of the wing will be specified by the parameters no and p (Fig.l), and we will write 
U(,* = -I?, It?, = C. 

We follow /l/ is formulating the boundary value problem for the region OAB in the En 
plane, where OA represents the wing surface, AB the shock wave and BO the planes of 
symmetry. Since the problem is studied in the transonic approximation, a conical potential 
exists. The potential equation yields, after linearization, an equation for u.' /l/ in (/l/ 

Fig.1 

(I a?:?) “‘.: - Phrt,lu& -~ (1 - k%f) wnq 
bm 

= - 21;’ (Qr,’ f ?+‘) (1.11 

The equationoftheshockpolarandconditionofpotential 
continuity afteritslinearization, splitintothe correspcnd- 
ingconditions fortheparametersoftheunperturbed flow, and 
for the perturbations andtheseinturnyield the condition for 
$ at the shock wav; /l/ 

r, = ',o, g G ICE' - UII' = 0 (1.2) 

We shallalsorequire the condition of continuity of the 
perturbation potential /l/ 

,/ I 1, = 1,“. EUOi - ‘1 co1 = u’ - q”” T EfL (I 3, 

We specify atthewing surface the conditionofimpermee- 
bilityi'=~'(ePwhichyields, afterdifferentiatingalong the 
wing s.;rface, 

l)-~tgp=o, (2 - _5&.) ,g pwI’ - ,,, 1 - tg p - Es#.) w9’ = 11 (1.4) 

Thereforewehave, attheplane of symmetry u.'= 0. 

~=O.L1.“0 
q 

(1.5) 

The coordinate transformation 

(1.6) 

FirJ.2 
reduces (1.1) to the Laplace equation. The straight line n -na becomes a circular arc kno 
(1 - 112 - 2.2) = 2;., region OAB maps onto the region OA,E, and the upper half-plane maps into 
half of the unit circle (Fig.2). The boundary conditions (1.2), (1.4), (1.5) become, respect- 
ively, 

(1 - c? + 2ci.) rli' - 12 Cl, + (1 + CZ) $l-'1 w,.' = 0 (1 7) 

2 tg p co9 @,' - I(1 - tg” p) cd p - pq WA’ = 0 (1.8) 

LL.;’ = 0. (1.91 

The boundary value problem formulated in the region OA,B, represents a homogeneous Hilbert 
problem for the analytic function f+ zg= LT,,- KICK, with a boundary condition of the form Sf - 

Lg = 0 discontinuous at the apices of the region. The solvability of the problem is estab- 

lishedusingthe conformaltransformation r= R(O)= R (p+- I?.) to map the region into a circle 
and calculating the index of the corresponding problem for the function fr (r) + ig, (7) = ! (0) - 

ig (w) with boundary condition S, (f) fI (t) i L, (0 g, (L) = 0, S, (i) = S(T), L,(f) = L(T) at the circumference. 

The index x of the problem is given by the formula x= -& where xk are integers 



calculated at the points where the boundary condition is discontinuous, depending on the class 
of functions required at these points (we have in mind the index of the equivalent Riemann 
problem with a continuous coefficient, whose solvability is established using well-known 

theorems /9/I. 
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The class of functions I+ ig is specified by the physical condition that the velocity 
w' is bounded, which is equivalent to the integrability of j-tig in the $. plane, To choose 

the class of f,+ ig, at the point on the curcumference at which the argument of the vector 

(S,. 4 is discontinuous, we must take into account the asymptotic forms of the mapping r= 

R(a) defined by the internal angles czf at the apices of the region OA,B,. To have u.' bounded, 
we must choose the numbers xk using the conditions /l/ 

.,=J A. _a-aal<fJ.<fl 

1-1: -::yY:; ak 
where 8k is the jump in the argument of the vector (S,,L,) at the discontinuity in question 
(the argument is calculated as arctg (&IS,), with 1 Bh I < a). The branches of the argument chosen 
in this manner have, by virtue of (1.7)-(1.9), discontinuities only at the points 0 and Al. 

Calculating now the index with respect to the values of the parameters no, uol. p we find, 
that when 2sin*$>l- ~2, we have X= -I and no non-trivial solutions of the problem exist 

/9/. When 2sin2~<l -r*, we have Y. = 0. i.e. in accordance with /9/ the problem has a unique 
solution, defined apart from a constant multiplier. The multiplier is therefore obtained from 
the condition that the shock wave is attached (n'= 0 at the point A) and condition w' = U 
in the plane symmetry. 

From the equation of the shock polar in the plane perpendicular to the wing edge /1/ we 
find, that when 2sin?p> j -c:, then the shock wave is strong, and weak when 2sing b< I- 9. 

Consequently, if the shock wave is strong, the problem has no solution, while when the shock 
wave is weak, a solution exists and is unique. 

2. Let us consider the problem of the flow past a wedge. We introduce a perturbation 
into the initial flow with a plane shock at the wedge, by means of a slight conical deforma- 
tion of the wedge surface (E = 0). Then we have the condition of impermeability at the surface 
L' = Q (5,. We shall consider the perturbations under which dq'd: satisfies the Holder condition. 
Let us assume for simplicity that g(E)= 0 when 1 EI>&,>O. We shall determine whether a 
solution exists for an arbitrary function q(E) belonging to the class in question. We shall 
seek a solution under the condition that the magnitude of the perturbation of the shock wave 

9’ is finite over its whole extent. 
Let us formulate the boundary value problem in the strip II<I,<Q bounded by the images 

of the wedge surface 7) = 0 and of the shock wave 11= I),, Differentiating the condition of 
impermeability along the wedge surface, we find 

'I = 0. u.,,' = I~' = dq d; = ,I (:, 

Condition (1.2) holds at the surface of the shock wave. 
Changing now to the variables p.i., we obtain an inhomogeneous boundary value Hilbert 

problem for the function /+ ~g= I' - IU),' in the region OC,S,SI, with the condition 

i. = 0. xi,' = p (E (p)) = p ((11 

on DIG, and condition (1.8) on C,B,D,. The conditions have the form S! - Lg= p, and the argu- 
ment of the vector (s. L) has discontinuities at the points c,D,. 

To find the index of the equivalent RiemaM problem, we must find out in which class of 
functions its solution should be sought. Tine condition of continuity of the potential (1.3) 
shows that for n' to be bounded as /;I-=, the quantity u'must have an asymptotic of the 
form u.' - l/S*+a where a > (I. Taking into account the asymptotic form of the mapping (1.6) at 
the points C,.D, we find that in order to satisfy this requirement the function !-is musthave 
zeros of a certain order at these points. Since the argument of the vector (S,L) has first- 
order discontinuities at the points C, and D,, the presence of zeroswill be ensured if the 
solution is sought in the class of bounded functions /9/. 

Mapping now the region OC,B,D, into a circle and calculatingthe indexof the corresponding 
Riemann problem in the class of bounded functions (the mapping changes only the order of the 
zeros of the solution at the images of the points C,.D,). we find that x=-2 when i-G<:. 
i.e. the problem has no solution when the function q(E) is arbitrary. A solution exists and 
is unique, if q(E) satisfies one condition of solvability /9/. This condition is satisfied 
automatically, provided that q(E)= q(-f~. When i - cz > 0, the index is equal to zero and the 
problem has a general solution of the form (-!- ip= F(o)iCQ(o), in the pi. plane where C is 
an arbitrary real constant /9/. To satisfy the condition u'= 0 at the points C,, D,. the 
solution obtained must satisfy the additional requirement that 

n, 
Rr [ [/-r:)do= 0 . 

Cl 
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which yields the constant C. When x= -2, the requirement represents the second condition of 
solvability. The solutions obtained when both conditions of solvability are satisfied, are 
isolated. 

Since the condition i-?>(I corresponds to a weak, and 1 -cc'<0 to the strong shock 
wave /l/, it follows from the above analysis that when the wedge surface is subjected to an 
arbitrary conical perturbation, a solution exists and is unique if the unperturbed shock 
wave is weak, and there are no solutions if the shock is strong. 

The author thanks E.G. Shifrin for his interest. 
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TWO-VELOCITY MECHANICS OF GRANULAR POROUS MEDIA* 

N.3. MUSAYEV 

A two-phase mixture of a porous or granular solid phase and liquid or gas 
filling the pores or the intergranular spaces, is considered. Two limiting 
structures of the mixture are specified: 1) the solid phase represents 
dense packing cf spherical particles (grains) in intergranular point 
contact; 2) the pores represent channels, almost cylindrical in form. 
Expressions for the interphase forces and equations of the two-velocity 
motion of the phases are studied within these two structures. Different 

development of the interphase forces depending on the structure of the 
mixture is noted, the forces arising from the forces of inertia and in 
particular from the Archimedes and the attached-mass forces. 

Using the representations of the multivelocity continuum, we shall write the equation of 
conservation of phase masses in the form /l/ 

dp,/61 + @p,t,k = jzl. ap&% +- +p,Q = jl* (1 
(pi = p:ai, i = i, 2; a1 + CT* = i) 

The lower indices i=l, 2 refer, respectively, to the parameters of the liquid (gaseous 

and solid phases, pi0 and ~1 are the real and apparent density connected with each other 
through the volume concentration, Qi,v, is the velocity of the t-th phases, and I,, is the 
phase transition intensity characterizing the amount of mass of the j-th phase transported to 
the i-th phase per unit volume of the mixture, in unit time (I, j = 1,2; i F j). 

The equations of the phase moments can be written in the form /l/ 
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